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A B S T R A C T

Adhesive peeling of a thin elastic film from a substrate is a classic problem in mechanics.
However, many of the investigations on this topic to date have focused on peeling from
substrates with flat surfaces. In this paper, we study the problem of peeling an elastic thin
film from a rigid substrate that has periodic surface undulations. We allow for contact between
the detached part of the film with the substrate. We give analytical results for computing the
equilibrium force given the true peeling angle, which is the angle at which the detached part of
the film leaves the substrate. When there is no contact we present explicit results for computing
the true peeling angle from the substrate’s profile and for determining an equilibrium state’s
stability solely from the substrate’s surface curvature. The general results that we derive for the
case involving contact allow us to explore the regime of peeling at large surface roughnesses.
Our analysis of this regime reveals that the peel-off force can be made to become independent
of the peeling direction by roughening the surface. This result is in stark contrast to results from
peeling on flat surfaces, where the peel-off force strongly depends on the peeling direction. Our
analysis also reveals that in the large roughness regime the peel-off force achieves its theoretical
upper bound, irrespective of the other particulars of the substrate’s surface profile.

. Introduction

Bumpy protrusions on the surface of the lotus leaf at the small length scales have been shown to endow the leaf with the property
f super-hydrophobicity (non-wettability) at the large scales (Barthlott and Neinhuis, 1997). This non-wetting property is the source
f the lotus leaf’s acclaimed self-cleaning ability. Similarly, the periodic, small-scale, wavy undulations on the skin of some sharks
re thought to reduce the skin’s frictional drag (Wen et al., 2014), as shown in Fig. 1a. Such intriguing links between small-scale
echanical structures and large-scale physical properties, however, are not limited to biological systems. The small-scale topography

f natural surfaces, which is generally stochastic, is often referred to as surface roughness. When separating two contacting surfaces,
he surfaces’ roughness is typically thought to reduce the adhesion between them (Fuller and Tabor, 1975; Levins and Vanderlick,
995; Quon et al., 1999; Rabinovich et al., 2000). However, there are cases in which roughness is seen to actually enhance adhesion
Briggs and Briscoe, 1977; Kesari et al., 2010). Small-scale mechanical design cannot just modulate surface properties at the large-
cale but, in fact, give rise to completely new phenomenon at the large scales. For example, it was shown by Kesari and Lew (2011),
esari et al. (2010) and Deng and Kesari (2019a,b, 2017) that small-scale surface topography can give rise to the phenomenon of
epth-dependent hysteresis at the large scales.

In engineering sciences, there is currently tremendous interest in creating materials with novel properties, such as materials
ith negative Poisson’s ratios, through the use of small-scale, intricate lattice-based mechanical designs (e.g., Fig. 1b). The recent
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Fig. 1. (a) The bonnethead shark (Sphyrna tiburo) skin surface at different body locations (Wen et al., 2014). (b) 3D printed helmet (from Blokland, 2019, used
without permission). (c) Picking up (i–ii) and placing (iii–iv) solid objects from one substrate to another in transfer printing (Feng et al., 2007).

popularity of 3D printing is, presumably, primarily responsible for galvanizing such interests. The concept of modulating material
properties at the large scale through incorporating mechanical designs at the small-scale – in contrast to, say, through the use
of chemical or metallurgical treatments – has been of interest, in fact, for the past several decades in the composites and the
mathematical homogenization communities (Michel et al., 1999; Ericksen et al., 2012; Castaneda, 2002). However, the focus in
engineering and mathematics has primarily been on modulating bulk material properties, such as elastic stiffness and thermal
conductivity. Needless to add, surface physical properties, such as adhesion, friction, etc., are no less important than bulk properties,
and, as can be gleaned from the examples previously mentioned, small-scale mechanical designs can lead to not just modulation
but the emergence of completely new surface properties at the large scale. Therefore, a reason behind the engineering community’s
narrow focus could be that the mathematical theories that connect large-scale surface physical properties to small-scale mechanical
designs are not as well developed as the ones that connect bulk physical properties to small-scale mechanical designs. In this paper,
we focus on the surface property of adhesion and present a mathematical theory that connects the large-scale force needed to peel
off a thin elastic film from a rigid substrate to the substrate’s small-scale surface topography.

Adhesion is one of the most important surface physical properties. (See Deng and Kesari, 2019b; Popov et al., 2017; Ciavarella
et al., 2019 for discussions on this aspect.) Adhesive peeling of a thin elastic film1 from a substrate is ubiquitous in biological and
engineering systems and draws growing attention due to its many applications (e.g., Fig. 1c). Despite its long history, the topic of
thin film peeling continues to reveal new and interesting phenomena. We review some of the recent studies on this topic in the
following three paragraphs.

The mechanics of thin film peeling has been extensively studied over the decades after the seminal work of Rivlin (1944) and
Kendall (1975b), who analyzed the peeling of a thin film from a flat surface and its importance in understanding the adhesion
mechanisms in thin film–substrate systems. For example, Pesika et al. (2007) presented a peel-zone model to study the effect of
the peeling angle and friction on adhesion based on the microscopic observation of the geometry of the peel zone during film
detachment. Chen et al. (2009) considered the effect of pre-stretching the film in Kendall’s peeling model and found that the pre-
tension significantly increases the peeling force at small peeling angles while decreasing it at large angles. Molinari and Ravichandran
(2008) proposed a general model for the peeling of non-linearly elastic thin films and investigated the effects of large deformations
and pre-stretching. Begley et al. (2013) developed a finite deformation analytical model for the peeling of an elastic tape and defined
an effective mixed-mode interface toughness to account for frictional sliding between the surfaces in the adhered region. Gialamas
et al. (2014) used a Dugdale-type cohesive zone to model adhesion between an incompressible neo-Hookean elastic membrane and a
flat substrate and carried out both single- and double-sided peeling analysis, while ignoring the membrane’s bending stiffness. Menga
et al. (2018) investigated the periodic double-sided peeling of an elastic thin film from a deformable layer that is supported by a
rigid foundation. Kim and Kim (1988) performed an elasto-plastic analysis of a thin film peeling problem in which the de-adhered
part of the film is in pure-bending. Kinloch et al. (1994) performed an elasto-plastic analysis of the peeling of flexible laminates and
calculated the fracture energy, which included not just the energy required to break the interfacial adhesive bonds but also the energy
dissipated in the plastic/viscoelastic zone at the peeling front. Wei and Hutchinson (1998) numerically investigated the steady-state,
elasto-plastic peeling of a thin film from an elastic substrate using a cohesive zone model. Loukis and Aravas (1991) analyzed the
peeling of a viscoelastic thin film from a rigid substrate and related the fracture energy and peel-off force to the peeling speed and
film thickness. Afferrante and Carbone (2016) investigated the peeling of an elastic thin film from a flat viscoelastic substrate and
gave a closed-form expression relating the peeling force to the peeling angle and the work of adhesion.

1 Typically, the Young’s modulus of the thin elastic film ranges from the order of 1 MPa to the order of 1 GPa.
2
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Spatial heterogeneity in the thin film’s elasticity and the interface’s strength can lead to significant enhancement of the effective
eel-off force. The role of spatial heterogeneity in peeling was first highlighted by Kendall (1975a) who carried out peeling
xperiments using an elastic thin film that had alternating large and small bending stiffness regions. He varied the stiffness by either
ntroducing reinforcements at select positions on a uniform thin film or by varying the film’s thickness along its length. He peeled
he film from a rigid substrate at a constant force and observed abrupt changes in the speed of the peeling front at the boundaries
etween the stiff and compliant regions, and an overall enhancement in the peeling force. Ghatak et al. (2004) and Chung and
haudhury (2005) performed displacement-controlled peeling experiments between a flexible plate and an incision-patterned thin
lastic layer and found that the patterns significantly enhanced the effective adhesion. They attributed the enhancement to arrest
nd re-initiation of the peeling front motion at the edges of the features in the pattern. More recently, Xia et al. (2012, 2013, 2015)
xperimentally and theoretically investigated the peeling of an elastic thin film while spatially varying the bending stiffness and
nterface strength in it. They showed that the film’s large-scale (‘‘effective’’) adhesive properties could be significantly enhanced
hrough the use of small-scale spatial heterogeneity.

There have been several studies that investigate the effect of surface roughness on thin film adhesion. For instance, Zhao et al.
2013) simulated the peeling of a hyperelastic thin film from a rough substrate using finite elements and a cohesive zone model. They
ound that the peeling force could be increased by introducing a hierarchical wavy interface between the film and the substrate.
hatak (2014) theoretically investigated the peeling of a flexible plate from an adhesive layer which was supported on a rigid

ubstrate and had spatially varying surface topography and elastic modulus. He found that the maximum adhesion enhancement
ook place when the surface height and elastic modulus varied in phase. Peng and Chen (2015) studied the peeling of an elastic thin
ilm from a rigid substrate having sinusoidally varying surface topography. They computed the peeling forces for different peeling
ngles and surface topography parameters and found that the maximum peeling force could be significantly enhanced by increasing
he substrate’s surface roughness. To our knowledge there have not been any studies that consider contact between the de-adhered
ortion of the film and the substrate, or which study the stability of the equilibrium configurations, as we do in this paper. The
urface topography that we consider is fairly general and the regime we explore, namely where the lateral length scales in the
ubstrate’s surface topography are much smaller than the other length scales in the problem, has also not been explored within the
ontext of thin film peeling.

In this paper we study the mechanics of peeling in a plane (2-dimensional) problem. Specifically, we study the peeling of a thin
lastic film from a rigid substrate whose surface is nominally flat with superimposed periodic undulations in a single direction.
o be more precise, the substrate’s topography is, respectively, invariant and periodic in two orthogonal directions that lie in the
ubstrate’s nominal surface plane. The invariant and periodic directions are shown marked as e3 and e1, respectively, in Fig. 2a.

The applied tractions as well as all fields in the film also do not vary in the e3 direction. We assume that the film’s de-adherence
nly takes place at the peeling front, which is a straight line parallel to e3. We find that in the regime where the substrate’s
urface roughness is large, the peel-off force becomes independent of the direction in which the film’s free end is being pulled. This
esult is in stark contrast to the results from the seminal analysis of Rivlin (1944) and Kendall (1975b), who studied the classical
roblem of plane peeling of a thin elastic film from a flat surface. In that classical problem the peel-off force strongly depends on the
irection of peeling. We also find that this angle-independent peel-off force’s magnitude, in fact, equals the maximum value that is
ossible for the peel-off force during the plane peeling of a thin elastic film from a rigid substrate, irrespective of the details of the
ubstrate’s profile and the direction of peeling. The aforementioned results are especially significant considering that nowadays it
s routinely possible to create highly regular small-scale topographies on engineering surfaces through the use of micro-fabrication
nd 3D printing technologies.

We make the following assumptions in our problem. We assume that initially the thin film is perfectly adhered to the substrate,
.e., with no gaps between it and the substrate’s surface. Over the adhered region we do not allow for (tangential) slip between
he thin film and the substrate’s surface. We model adhesive interactions between the film and the substrate using the JKR
heory (Johnson et al., 1971), as per which during peeling the system’s energy increases linearly with the area of the region of
he film–substrate interface that comes de-adhered. We consider a force-controlled peeling process. The force is applied to the thin
ilm’s free end and its magnitude and direction can vary in a fairly general way with time, as long as the force is tensile in nature.

e term the angle that the applied force makes with the direction that is parallel to e1 and points away from adhered portion
f the film the nominal peeling angle, or just the peeling angle for short (Fig. 2a). We take the peeling process to be quasi-static in
ature and ignore all inelastic and inertial effects. We do use the notion of time, however, but only so that we can speak about the
equence of events that take place in our peeling experiment. By a peeling experiment we mean a sequence of peeling angles and
orce magnitudes applied to the thin film, which are infinitesimally different from each other.

We take the thin film to be composed of a linear elastic material and to be of vanishing thickness. Consequently, we assume
hat the thin film’s elastic strain energy only depends on its stretching deformations. Specifically, we ignore any ‘‘bending energy’’
n the thin film. The deformations related to stretching, however, can be of finite magnitude. Despite these and the many other
ssumptions that we introduce over the course of the paper, our analysis reveals important and interesting new mechanics. This is
ossible, we believe, because we retain the important feature of contact in our problem. That is, we allow for the detached part of
he thin film to come into contact with the substrate’s surface and assume that such contact is non-adhesive and frictionless (Fig. 2b
nd c). By retaining this important feature of contact we are able to investigate the regime where the substrate’s surface roughness is
arge. Additionally, it is in this regime where the peel-off force becomes independent of the peeling angle and the force’s magnitude
ecomes equal to its maximum value.

The outline of the paper is as follows.
3
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Fig. 2. (a) The schematic of peeling a thin elastic film from a rigid substrate with a periodic, wavy surface. (b–c) The contact between the detached part of
the thin film and the substrate during the forward peeling and backward peeling, respectively. Yellow: detached part of the thin film; Blue: adhered part of the
thin film. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

We introduce the technical details of our problem in Section 2.1. Specifically, we describe the kinematics of our problem in
Section 2.1.1, and present the law that we use for modeling the thin film’s de-adherence in Section 2.1.2. We take a configuration in
our problem to be defined by the de-adhered length, the peeling angle, and the substrate’s surface profile. The de-adhered length is
defined in Section 2.1.1, and is roughly the width of the region on the substrate’s nominal surface in the e1 direction from which
the film has been detached. In Section 2.1.3 we derive the sufficiency condition, which we term the global compatibility condition,
for there to be no contact between the detached part of the thin film and the substrate in a given configuration. We present results
for the case in which the global compatibility condition holds, i.e., in which there is no contact, in Section 2.2, and for the case
in which it is violated in Section 2.3. (When the global compatibility condition is violated the configurations that occur during a
peeling experiment may or may not involve contact.)

For both cases we give explicit, analytical results for computing the equilibrium force given the true peeling angle, which is the
angle at which the detached part of the film leaves the substrate (Fig. 3). For the case in which there is no contact, we present explicit
results for computing the true peeling angle from the substrate’s profile, and for determining an equilibrium state’s stability just
from the substrate’s surface curvature. We call a configuration along with the magnitude of the force acting on it a state. For the case
in which there can be contact, we present an algorithm (see Algorithm 1) that allows for numerically calculating the configuration’s
true peeling angle, and determining an equilibrium state’s stability.

For both cases, we also prove that there exist critical force values, such that if the magnitude of the applied force lies outside their
range, the film either continuously de-adheres or adheres until the film is completely peeled off from or adhered to the substrate.
We term these quantities the peel-initiation and peel-off forces. We determine the peel-initiation force’s minimum value as well the
peel-off force’s maximum value for the wide class of surface profiles that we consider in our problem and all admissible peeling
angles.

We prove that in a peeling experiment in which the peeling angle is held at a fixed value that is both acute (resp. obtuse)
and violates the global compatibility condition the peel-off (resp. peel-initiation) force achieves its maximum (minimum) value,
irrespective of the substrate’s profile.

Again considering experiments in which the peeling angle is held constant we show in Section 3 that as the surface roughness
becomes large the peel-off force becomes independent of the experiment’s peeling angle. This happens irrespective of the substrate’s
surface profile. The surface roughness becoming large is equivalent to the scenario where the lateral length scales in the substrate’s
surface topography becomes small. Furthermore, we also show that the magnitude of that angle-independent, peel-off force equals
the maximum that is possible to be achieved.

Finally, we conclude the paper by discussing the effect of the thin film’s elastic bending energy on the peel-off force in Section 4.

2. Theory of wavy peeling

2.1. Model

2.1.1. Geometry and kinematics
Fig. 2 shows the geometry of our wavy peeling problem. Let E be a three-dimensional, oriented, Hilbert space, and let the

Euclidean point space  be E’s principle homogeneous space. The elements of E have units of length. The physical objects in our
4
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Fig. 3. The schematic of peeling without contact during an infinitesimal advance of the peeling front from 𝑃 to 𝑃 , where 𝛿𝒖 denotes the variation of position
vector of the free end of the thin film, 𝜓(𝑎) is the true peeling angle. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

peeling problem are contained in  . The origin of  , which we denote as 𝑂, is marked in Fig. 2. The vector set
(

ê𝑖
)

𝑖∈ , where the
index set  ∶= (1, 2, 3), is an orthonormal set in E. That is, ê𝑖 ⋅ ê𝑗 = 𝛿𝑖𝑗 , where 𝑖, 𝑗 ∈ , the symbol ⋅ denotes the inner product
operator between the elements of E, and 𝛿𝑖𝑗 is the Kronecker-delta symbol, which equals unity if 𝑖 = 𝑗 and naught otherwise.
A typical point 𝑋 ∈  is identified by its coordinates

(

𝑥𝑖
)

𝑖∈ ∈ R32 that are defined such that 𝑋 = 𝑂 +
∑

𝑖∈ 𝑥𝑖e𝑖. The vector
∑

𝑖∈ 𝑥𝑖e𝑖 ∈ E is called 𝑋’s position vector.
Note that the vector set (e𝑖)𝑖∈ is different from (ê𝑖)𝑖∈ ; it is defined as e𝑖 ∶= 𝜆ê𝑖, where 𝜆 > 0, for 𝑖 = 1, 2, and e3 ∶= ê3.

The set
(

e𝑖
)

𝑖∈ is an orthogonal, but not an orthonormal, basis for E. We will be following the Einstein summation convention in
this paper,3 and write expressions such as

(

e𝑖
)

𝑖∈ and ∑

𝑖∈ 𝑥𝑖e𝑖 simply as
(

e𝑖
)

and 𝑥𝑖e𝑖, respectively, and lists such as e1, e2,
and e3 simply as e𝑖.

The substrate is a rigid solid whose points’ position vectors belong to the set

S =
{

𝑥1e1 + 𝑥2e2 + 𝑥3e3 ∈ E ∣ (𝑥1, 𝑥2, 𝑥3) ∈ R3 and 𝑥2 < 𝜌(𝑥1) ∶= 𝛼𝜚(𝑥1)
}

, (2.1)

where 𝛼 ∶= 𝐴∕𝜆, 𝐴 ≥ 0, 𝜚 ∶ R → [−1, 1] is a surjective, 1-periodic function, and R is the set of real numbers. By 1-periodic we mean
that 𝜚(𝑥1 + 1) = 𝜚(𝑥1) for all 𝑥1 ∈ R. Without loss of generality we take ∫ 1

0 𝜚(𝑥1) 𝑑𝑥1 = 0. We also assume that 𝜚 and its first and
second derivatives, which we denote as 𝜚̇ and 𝜚̈, respectively, are non-constant, continuous functions, i.e., 𝜚 ∈ 𝐶2. We call 𝛼, 𝐴, 𝜆,
and 𝜚 the substrate surface’s aspect ratio, amplitude, periodicity, and profile, respectively.

We take the thin film to be of width b, of thickness h, and to be perfectly adhered to the substrate’s surface in its initial, or
reference, configuration. Here b and h are physical parameters and have units of length. Say the units of e𝑖 and ê𝑖 is some length
m, which, for example, may stand for meters, then we would say that the magnitude of b (resp. h) is 𝑏 (resp. ℎ) iff b = 𝑏m
(resp. h = ℎm). Thus, initially the configuration of the thin film can be described as

B0 =
{

𝑥1e1 + 𝜌
(

𝑥1
)

e2 + 𝑥3e3 ∈ E ∣ 𝑥1 ∈ , |𝑥3| ≤ 𝑏∕2
}

, (2.2)

where  ∶= [0,+∞).4

2 In our work the manner in which the information about a physical quantity’s units is stored is different from how that is usually done. We model different
physical quantities as vectors belonging to different vector spaces. We store the information about a physical quantity’s units in the basis vectors we choose
for that quantity’s vector space. For example, we may take 𝐞̂1 to represent a motion of 1m (or 1 μm) in a certain fixed direction in E. In that case 𝐞1, as a
consequence of its definition, would denote a motion of 𝜆m (resp. 𝜆 μm) in the same direction as 𝐞̂1. Thus, in our work the components of a physical quantity
with respect to the basis vectors chosen for its vector space will always be non-dimensional. For example the components of 𝑋 with respect to (𝐞𝑖), namely
(

𝑥𝑖
)

𝑖∈ , are dimensionless.
3 We follow the Einstein summation convention in this paper. If a symbol has an italicized, light-faced Latin character that appears as its subscript/superscript

then that subscript/superscript denotes an index and that symbol along with that subscript/superscript denotes a component of a linear mapping. An index that
appears only once in a term is called a ‘‘free’’ index. A free index in a term denotes that the term in fact represents the tuple of terms created by varying the
free index in the original term over . An index that appears twice in a term is called a ‘‘repeated index’’. A repeated index in a term denotes a sum of the
terms that are created by varying the free index in the original term over .

4 As is standard in continuum mechanics, we will be referring to a particular thin film material particle using the coordinates of the spatial point that it
occupied in the initial configuration. That is, when we say a material particle (𝑥1 , 𝑥2 , 𝑥3), we in fact are referring to the material particle that in the initial
configuration occupied the spatial point with coordinates (𝑥1 , 𝑥2 , 𝑥3). For the sake of brevity, we will be referring to a material particle (𝑥1 , 𝑥2 , 𝑥3) simply as
(𝑥1 , 𝑥3), since the second co-ordinate of any spatial point that was occupied by a thin film material particle in the initial configuration is fully determined by
the point’s first co-ordinate (cf. (2.2)). Finally, when we say ‘‘the (thin-film) material particle 𝑥1 ’’, where 𝑥1 ∈ , we in fact mean the group of material particles
(𝑥 , 𝑥 ), where |𝑥 | ≤ 𝑏∕2.
5
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We model the peeling process by assuming that any deformed configuration 𝜿 of the thin film can be described as5

B =
{

x(𝑥1) + 𝑥3e3 ∈ E ∣ 𝑥1 ∈ , |𝑥3| ≤ 𝑏∕2
}

, (2.3a)

where

x(𝑥1) ∶=
(

𝑥1 + 𝑢1(𝑥1)
)

e1 +
(

𝜌(𝑥1) + 𝑢2(𝑥1)
)

e2, (2.3b)

𝑢1, 𝑢2 ∶  → R and their derivatives, denoted as 𝑢̇1 and 𝑢̇2, are continuous. We further assume that 𝑢1
(

𝑥1
)

= 𝑢2
(

𝑥1
)

= 0
for all 𝑥1 ≥ 𝑎, for some 𝑎 ∈ , and 𝑢̇1

(

𝑥1
)

= 𝑢̇2
(

𝑥1
)

= 0 for all 𝑥1 > 𝑎. We refer to 𝑎 as the de-adhered length. We call
𝑃 ∶=

{

𝑂 + 𝑎e1 + 𝜌(𝑎)e2 + 𝑥3e3 ∈  ∣ |𝑥3| ≤ 𝑏∕2
}

the peeling front and 𝛤𝑎 = {𝑥1 ∈  ∣ 𝑥1 > 𝑎} the adhered region.
On knowing the de-adhered length 𝑎 the length of the film peeled from the substrate can be computed as 𝜆𝑙(𝑎 ; 𝜌)m, where

𝑙(⋅ ; 𝜌) ∶  →  is defined by the equation

𝑙(𝑎 ; 𝜌) = ∫

𝑎

0
𝑑𝑥1

(

1 + 𝜌̇(𝑥1)2
)1∕2 . (2.4)

We refer to 𝑙(𝑎 ; 𝜌) as the peeled length, and will often abbreviate it as 𝑙.

2.1.2. Evolution law for de-adherence
In postulating the evolution law for de-adherence, we ignore all dynamic effects, such as inertial forces, kinetic energy, and

viscoelastic behavior in the thin film. As we mentioned in Section 1, we do use the notion of time, but only so that we can speak
about the sequence of events that take place in our peeling experiment.

In our peeling experiment the thin film de-adheres due to the application of the force f to its free end, which initially is at 𝑂, the
origin of  . We think of force as a linear map from E into a one dimensional vector space whose elements have units of energy. The
set of all forces can, of course, be made into a vector space, which we will denote as F. We use the set

(

f𝑖
)

as a basis for F, where
f𝑖 are defined such that f𝑖

(

e𝑗
)

= E𝑐 𝛿𝑖𝑗 . The symbol E𝑐 , which appears in the last expression, is defined to be equal to the energy
𝜆Ebhm, where E is the thin film’s Young’s modulus. We express f as 𝐹 f̂, where 𝐹 ≥ 0 and f̂ ∶= − cos(𝜃)f1 + sin(𝜃)f2. The angle 𝜃
is shown marked in Fig. 3. It is prescribed as part of the problem’s definition. We call it the nominal peeling angle, or simply peeling
angle for short. We denote the position vector of the free end of the thin film, on which f acts, as u ∈ E, and will often refer to this
quantity as simply the force-position-vector. Our experiment is force controlled and quasi-static. By force-controlled we mean that
while the system’s configuration is changing, f is held fixed. If our experiment were a general force controlled experiment, then we
would be allowed to vary f once the adhered region had stopped evolving. However, in our experiment we are only allowed to vary
𝐹 after the adhered region has stopped evolving. By quasi-static we mean that each variation in 𝐹 is of infinitesimal magnitude and
is applied all at once at a particular instance in time.

Consider an experimentally observed configuration of the thin film 𝜿0, in which the de-adhered length is 𝑎−𝛥𝑎, the peeled length
is 𝑙−𝛥𝑙, the force position vector is u−𝛥u, and the force is (𝐹 −𝛥𝐹 )f̂. Imagine that a force variation of 𝛥𝐹 f̂ is then abruptly added
to the force that was previously acting on the thin film so that the new force is 𝐹 f̂. As a result, the thin film’s configuration will
evolve to a new configuration 𝜿 , in which the de-adhered length is 𝑎, the peeled length is 𝑙, the force-position-vector is u, and,
of course, the force is 𝐹 f̂. We postulate that the new configuration 𝜿 is the one that locally minimizes the system’s total potential
energy and is closest to 𝜿0.

To make the postulate precise, consider a configuration 𝜿 that is close to 𝜿 and has the same force as 𝜿 , i.e., 𝐹 f̂. The de-adhered
and peeled lengths, and the force-position-vector in 𝜿 are, however, different from those in 𝜿 ; we denote them, respectively, as
𝑎+ 𝛿𝑎, 𝑙+ 𝛿𝑙, and u+ 𝛿u. Since 𝐹 ≥ 0, i.e. the peeled section of the film is in tension, the variations 𝛿𝑙 and 𝛿u, in fact, depend on
𝛿𝑎. Thus, these variations are to be interpreted as abbreviations for 𝛿𝑙(𝛿𝑎 ; 𝑎, 𝐹 , 𝜌) and 𝛿u(𝛿𝑎 ; 𝑎, 𝐹 , 𝜌), respectively. Let the difference
in the system’s potential energy between the configurations 𝜿 and 𝜿 be E𝑐 𝛿𝐸, where E𝑐 is a constant and has unit of energy, and we
refer to 𝛿𝐸 ∈ R as the non-dimensional potential energy variation. In our model of the wavy peeling experiment, we take 𝛿𝐸 to be
a sum of three different energy variations. These variations take place, respectively, in the energy stored in the interbody adhesive
interactions between the thin film and the substrate, the elastic strain energy stored in the peeled part of the thin film, and, finally,
the energy stored in the apparatus that maintains the constant force 𝐹 f̂ between the configuration 𝜿 and 𝜿.

We model the adhesive interactions between the thin film and the substrate in the same manner as that done by Rivlin (1944).
That is, we assume that the formation of an interface region of area 𝛿A lowers the system’s total potential energy, irrespective
of the shape of the interface region or any other details of the experiment, reversibly by w𝛿A. Here, w is the Dupré work of
adhesion (Maugis, 2000, p. 30). Thus, the variation in the potential energy stored in the interbody adhesive interactions is

𝑤𝛿𝑙, (2.5)

where 𝑤 is defined such that Eh𝑤 =w. That is, 𝑤 is the non-dimensional work of adhesion.

5 In standard continuum mechanics the reference and deformed configurations are taken to belong to different spaces. In contrast, here we take both the
reference and deformed configurations, B and B, to belong to the space, namely E.
6
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p

We assume that the peeled part of the film is in uniform, uniaxial tension. It follows from this assumption that the strain in the

eeled part of the film is also uniform, and uniaxial, and that its magnitude is equal to 𝐹 . It also follows that the variation in the
elastic strain energy stored in the thin film is

1
2
𝐹 2𝛿𝑙. (2.6)

Usually, the above term is supplemented by an additional term that corresponds to bending energy in the thin film (Peng and
Chen, 2015). We, however, ignore the film’s bending energy in our model. As we state in our closing remarks, we believe that
ignoring the bending energy is unlikely to significantly affect our estimates for the film’s peel-off force in the type of the peeling
experiments that we consider in this paper.

The variation in the potential energy of the apparatus maintaining the constant force 𝐹 f̂ is −f(𝛿u). Say 𝛿u = 𝛿𝑢𝑗e𝑗 . This
variation can therefore be written as6

−𝑭 ⋅ 𝛿𝒖, (2.7)

where 𝑭 ∶= 𝐹 𝑭̂ , 𝑭̂ ∶= (− cos(𝜃), sin(𝜃), 0), and 𝛿𝒖 ∶=
(

𝛿𝑢𝑖
)

. It follows from the previous discussion that,

𝛿𝐸 = 𝑤𝛿𝑙 + 1
2
𝐹 2𝛿𝑙 − 𝑭 ⋅ 𝛿𝒖. (2.8)

As is the case with 𝛿𝑙 and 𝛿𝒖, the symbol 𝛿𝐸 in (2.8) is, in fact, an abbreviation for the value 𝛿𝐸(𝛿𝑎; 𝑎, 𝐹 , 𝜌).
Since 𝛿𝑙 and 𝛿𝒖 depend on 𝛿𝑎, the formula for 𝛿𝐸 given by (2.8) needs to be further refined before it can be used for determining

whether or not a particular de-adhered length 𝑎 is in equilibrium; and, if 𝑎 is in equilibrium, then for determining the stability of
that equilibrium. The particulars of the requisite refinement depend on whether or not the peeled part of the film contacts the
substrate. Therefore, we will be making separate refinements of (2.8) for the cases of no-contact and contact in Sections 2.2 and
2.3, respectively. In both cases, however, the refinement process will involve determining the asymptotic dependence of 𝛿𝑙 and 𝛿𝒖
on 𝛿𝑎 as 𝛿𝑎→ 0, and then using that information to determine the asymptotic dependence of 𝛿𝐸 on 𝛿𝑎.

2.1.3. Conditions for the peeled part of thin film to not contact the substrate
Let 𝑻

(

𝑥1
)

be (e1 ⋅ẋ(𝑥1),e2 ⋅ẋ(𝑥1), 0) ∈ R3, where x(𝑥1) is defined in (2.3b). Because a material particle 𝑥1 is de-adhered from
or adhered to the substrate (depending on whether 𝑥1 is less than or greater than 𝑎), the vector 𝑻 (𝑥1) will often be discontinuous at
𝑥1 = 𝑎. However, since we have assumed 𝜚̇, 𝑢̇1, and 𝑢̇2 to be continuous, the following right and left hand limits of 𝑻

(

𝑥1
)

as 𝑥1 → 𝑎
are well defined:

𝑻
(

𝑎±
)

∶= lim
𝑥1→𝑎±

𝑻 (𝑥1).

The vector 𝑻
(

𝑎+
)

is essentially the tangent to the substrate’s surface profile at 𝑥1 = 𝑎, and the vector −𝑻 (𝑎−) points in the
direction the detached part of the thin film leaves the substrate’s surface at the peeling front. (See Fig. 3.) We call the angle between
𝑻 (𝑎−) and 𝑻

(

𝑎+
)

the true peeling angle 𝜓(𝑎). For the thin film to not go through the substrate immediately after de-adhering from
it, it is necessary that

𝜓(𝑎) ∈ [0, 𝜋]. (2.9)

We refer to (2.9) as the local compatibility condition.
It can be shown that once the local compatibility condition is satisfied, the peeled part of the thin film will not contact the

substrate anywhere, irrespective of the location of the peeling front iff

𝜃 ∈
[

− tan−1 (𝜌̇−) , 𝜋 − tan−1
(

𝜌̇+
)]

, (2.10a)

where

𝜌̇± ∶= 𝜌̇
(

𝑎±
)

, (2.10b)

𝑎± ∶= argmax
{

± 𝜌̇
(

𝑥1
)

∣ 𝑥1 ∈ [0, 1]
}

. (2.10c)

We refer to (2.10) as the global compatibility condition.

2.2. Peeling with no contact

In this section we study the case in which the local and global compatibility conditions (i.e., (2.9) and (2.10)) are satisfied, and
therefore the peeled part of the thin film does not contact the substrate anywhere.

6 The symbol ⋅ in this expression denotes the inner product operator between elements of R3.
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2.2.1. Energy variation
Since the peeled part of the thin film is not in contact with the substrate, it follows that

𝛿𝒖 = (𝛿𝑎, 𝛿𝜌) + 𝛿𝑙(1 + 𝜀)𝑭̂ , (2.11)

where 𝜀 is the uniform, uni-axial strain in the peeled part of the thin film, and 𝛿𝜌 ∶= 𝜌(𝑎 + 𝛿𝑎) − 𝜌(𝑎). It follows from (2.4) that

𝛿𝑙(𝛿𝑎; 𝑎, 𝜌) = 𝑙̇(𝑎; 𝜌)𝛿𝑎 + 1
2
𝑙(𝑎; 𝜌) (𝛿𝑎)2 + 𝑜

(

(𝛿𝑎)2
)

, (2.12)

where

𝑙̇(𝑎; 𝜌) =
(

1 + 𝜌̇(𝑎)2
)

1
2 , (2.13a)

𝑙(𝑎; 𝜌) =
𝜌̇(𝑎)𝜌̈(𝑎)

(

1 + 𝜌̇(𝑎)2
)
1
2

. (2.13b)

Substituting the asymptotic expansions for 𝛿𝜌 and 𝛿𝑙 as 𝛿𝑎→ 0 into (2.11), and then substituting the resulting asymptotic expansion
for 𝛿𝒖 into (2.7), we find that

−𝑭 ⋅ 𝛿𝒖 = 𝐹
(

cos(𝜃) − sin(𝜃)𝜌̇(𝑎) − (1 + 𝜀)𝑙̇(𝑎)
)

𝛿𝑎 − 1
2
𝐹
(

sin(𝜃)𝜌̈(𝑎) + (1 + 𝜀)𝑙(𝑎)
)

(𝛿𝑎)2 + 𝑜
(

(𝛿𝑎)2
)

. (2.14)

he symbol 𝑜, that appears in (2.14) and elsewhere, is the Bachmann–Landau ‘‘Small-Oh’’ symbol. Its primary property of relevance
s that 𝑜

(

(𝛿𝑎)𝑛
)

∕(𝛿𝑎)𝑛 → 0, where 𝑛 = 0, 1,…, as 𝛿𝑎→ 0.
In the current case of no contact it also follows that the true peeling angle is given by

𝜓(𝑎) = 𝜃 + tan−1 (𝜌̇ (𝑎)) . (2.15)

y recognizing from (2.15) that

cos(𝜓(𝑎))𝑙̇(𝑎; 𝜌) = cos(𝜃) − sin(𝜃)𝜌̇(𝑎), (2.16)

e can rewrite (2.14) as

−𝑭 ⋅ 𝛿𝒖 = 𝐹 (cos(𝜓(𝑎)) − (1 + 𝜀)) 𝑙̇(𝑎; 𝜌)𝛿𝑎 − 1
2
𝐹
(

sin(𝜃)𝜌̈(𝑎) + (1 + 𝜀)𝑙(𝑎; 𝜌)
)

(𝛿𝑎)2 + 𝑜((𝛿𝑎)2). (2.17)

By substituting (2.17) into (2.8), and noting that on account of our non-dimensionalization scheme 𝜀 = 𝐹 , we get that

𝛿𝐸(𝛿𝑎; 𝑎, 𝐹 , 𝜌) = 𝛿𝐸1(𝑎 ; 𝜌, 𝐹 )𝛿𝑎 + 𝛿𝐸2(𝑎 ; 𝜌, 𝐹 ) (𝛿𝑎)2 + 𝑜
(

(𝛿𝑎)2
)

, (2.18a)

where

𝛿𝐸1(𝑎 ; 𝜌, 𝐹 ) ∶=
(

−1
2
𝐹 2 + 𝐹 (cos(𝜓(𝑎)) − 1) +𝑤

)

𝑙̇(𝑎; 𝜌), (2.18b)

𝛿𝐸2(𝑎 ; 𝜌, 𝐹 ) ∶= −1
2

(

𝐹 sin(𝜃)𝜌̈(𝑎) +
(

𝐹 2

2
+ 𝐹 −𝑤

)

𝑙(𝑎; 𝜌)
)

. (2.18c)

.2.2. Equilibrium state
Since we take 𝜌 ∈ 𝐶2, it follows that 𝜌̇ and 𝑙̇ are continuous, and, as a consequence, that 𝛿𝐸1(⋅; 𝜌, 𝐹 ) is continuous. It then follows

that for 𝑎 to be an equilibrium de-adhered length it is necessary that 𝛿𝐸1(𝑎 ; 𝜌, 𝐹 ) = 0. For a given 𝐹 and 𝜌 there can, however, be
more than one de-adhered length that is in equilibrium. We characterize all those lengths by saying that they belong to the set

◦(𝐹 , 𝜌) ∶=
{

𝑎 ∈  ∣ 𝛿𝐸1(𝑎 ; 𝜌, 𝐹 ) = 0
}

. (2.19)

We plot the set of points ◦(𝐹 , 𝜌) {𝐹 }7 for various 𝐹 values, for the example surfaces shown in Fig. 4a and c in Fig. 4b and d,
respectively. As can be seen, the peeling force for peeling on wavy surface is not constant, but varies with the same periodicity of
the wavy surfaces. It can be shown that the point set ◦(𝐹 , 𝜌) {𝐹 }, for any admissible 𝐹 , falls on the graph of the periodic function

𝐹 (⋅) ∶= F◦𝜓, (2.20a)

here 𝜓 is defined in (2.15) and F ∶ [0, 𝜋] →  is defined by the equation

F(𝜓) = cos (𝜓) − 1 +
(

(cos(𝜓) − 1)2 + 2𝑤
)1∕2

. (2.20b)

7 The symbol denotes the Cartesian product between sets. We use the symbol 𝐹 to denote both the magnitude of the force acting on the thin film as well
as the function defined in (2.20a).
8
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Fig. 4. (a)–(c) Thin film peeling on a sinusoidal surface that does not involve contact. In this example, 𝐴 = 0.25, 𝜆 = 1.0, 𝜃 = 𝜋∕3, and 𝜚(𝑥1) = − cos
(

2𝜋𝑥1
)

. (a)
The peeling configurations corresponding to the equilibrium state as marked in (b). (b) The plot of the set of points ◦(𝐹 , 𝜌)×{𝐹 }. The peel-off force 𝐹 + = 0.099,
which is much greater than the peel-off force, 0.01, for peeling on a flat surface with the same nominal peeling angle. (c) The plot of the signed curvature and
graph of 𝜌 of the sinusoidal surface. (d)–(f) Thin film peeling on a complicated surface that does not involve contact. In this example, 𝐴 = 1.0, 𝜆 = 1.0, 𝜃 = 𝜋∕2,
𝜚(𝑥1) =

(

sin(2𝜋𝑥1) + cos(4𝜋𝑥1 + 𝜋∕4)∕2 + sin(8𝜋𝑥1 + 𝜋∕3) + 0.256
)

∕1.315. (d) The peeling configurations corresponding to the equilibrium state as marked in (e). (e)
The plot of the set of points ◦(𝐹 , 𝜌) × {𝐹 }. The peel-off force 𝐹 + = 0.97, which is much greater than the peel-off force, 0.005, for peeling on a flat surface with
the same nominal peeling angle. (f) The plot of the signed curvature and graph of 𝜌 of the complicated surface. In (b) and (e), the stable equilibrium state is
marked as ∙, neutral as ⊙, and unstable as ◦. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

We only consider cases in which the work of adhesion 𝑤 is non-negative. It therefore follows from (2.20b) that F(𝜓) is always

non-negative. The graph of F for different 𝑤 values is shown in Fig. 5. As can be seen, F is a strictly decreasing function whose

value at any admissible 𝜓 increases with 𝑤.
9
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Fig. 5. The plot of the graph of F as 𝜓 increases from 0 to 𝜋 for different 𝑤.

Kendall analyzed the peeling of a thin film on a flat smooth surface (Kendall, 1975b). By setting 𝜌(𝑥1) = 0 for a flat surface,
which leads to 𝜓(𝑎) = 𝜃 from (2.15), Kendall’s result can be immediately recovered from (2.20) which gives the peeling force as

𝐹 (𝑎) = cos(𝜃) − 1 + ((cos(𝜃) − 1)2 + 2𝑤)1∕2, (2.21)

which is a constant for a given nominal peeling angle 𝜃.
For a general peeling process we define the supremum and infimum equilibrium force values, denoted as 𝐹+ and 𝐹−, respectively,

as

𝐹± = sup ∕ inf {F (𝜓(𝑎)) ∣ 𝑎 ∈ }. (2.22)

It can be shown that the maximum and minimum values of the function F are (2𝑤)1∕2 and (4+ 2𝑤)1∕2 −2, respectively. This implies
that 𝐹+ is bounded above by (2𝑤)1∕2 and 𝐹− is bounded below by (4 + 2𝑤)1∕2 − 2.

We denote the maximum and minimum values of the true peeling angle during peeling as 𝜓+ and 𝜓−, respectively. In the current
case of peeling with no contact it follows from the fact that F is a monotonically decreasing function that

𝐹± = F
(

𝜓∓) , (2.23a)

where

𝜓± ∶= 𝜃 + tan−1
(

𝜌̇±
)

. (2.23b)

Since F(𝜓) is always non-negative it follows from (2.23a) that 𝐹± ≥ 0.

Theorem 2.1. If 𝐹 ∉ [𝐹−, 𝐹+] then there does not exist any equilibrium de-adhered length at that 𝐹 (e.g., see Fig. 4b and e).

Proof. Since 𝜓± are the maximum and minimum values of 𝜓(𝑎), respectively, and from (2.9) we have

0 ≤ 𝜓− ≤ 𝜓(𝑎) ≤ 𝜓+ ≤ 𝜋. (2.24)

From (2.24) and the fact that the cosine function is strictly decreasing in the interval [0, 𝜋], we find that

−1 ≤ cos
(

𝜓+) ≤ cos (𝜓(𝑎)) ≤ cos (𝜓−) ≤ 1. (2.25)

The inequalities (2.25) allow us to express cos (𝜓(𝑎)) as either cos (𝜓−) − 𝛿− or cos
(

𝜓+)+ 𝛿+; and, though they depend on 𝑎, 𝛿∓, are
always non-negative.

Let us first consider the case 𝐹 > 𝐹+. When 𝐹 is strictly greater than 𝐹+ it can be represented as 𝐹+ + 𝜀+ for some 𝜀+ > 0. Using
this representation for 𝐹 and expressing cos (𝜓(𝑎)) as cos (𝜓−) − 𝛿− in (2.18b) we get that

𝛿𝐸1(𝑎 ; 𝜌, 𝐹 ) = −1
2
(

2𝐹+ (

𝛿− + 𝜀+
)

+ 𝜀+
(

2𝛿− + 𝜀+ + 2
) )

𝑙̇(𝑎; 𝜌) + 𝜀+ cos (𝜓−) 𝑙̇(𝑎; 𝜌). (2.26)

Equation (2.4) implies that the derivative of the peeled length 𝑙̇(𝑎; 𝜌) is always positive. For that reason and since cos (𝜓−) ≥ −1 it
follows from (2.26) that when 𝐹 > 𝐹+

𝛿𝐸 (𝑎 ; 𝜌, 𝐹 ) ≤ −1 (

2𝐹+ (

𝛿− + 𝜀+
)

+ 𝜀+
(

2𝛿− + 𝜀+
))

𝑙̇(𝑎; 𝜌). (2.27)
10
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It follows from (2.27) and the facts that 𝑙̇(𝑎; 𝜌) and 𝜀+ are positive and 𝛿− and 𝐹+ are non-negative that when 𝐹 > 𝐹+

𝛿𝐸1(𝑎; 𝜌, 𝐹 ) < 0. (2.28)

Since for equilibrium it is necessary that 𝛿𝐸1(𝑎; 𝜌, 𝐹 ) = 0 it follows from (2.28) that there can exist no equilibrium de-adhered lengths
when 𝐹 > 𝐹+.

Now consider the case 0 ≤ 𝐹 < 𝐹−. When 𝐹 < 𝐹− it can be represented as 𝐹− − 𝜀− for some 𝜀− > 0. Representing 𝐹 this way
and expressing cos (𝜓(𝑎)) as cos

(

𝜓+) + 𝛿+ in (2.18b) we determine that

𝛿𝐸1(𝑎; 𝜌, 𝐹 ) =
1
2
(

2𝐹− (

𝛿+ + 𝜀−
)

− 𝜀−
(

2𝛿+ + 𝜀− − 2
) )

𝑙̇(𝑎; 𝜌) − 𝜀− cos
(

𝜓+) 𝑙̇(𝑎; 𝜌). (2.29)

Since 𝑙̇(𝑎; 𝜌) > 0 and cos
(

𝜓+) ≤ 1 it follows from (2.29) that when 𝐹 < 𝐹−

𝛿𝐸1(𝑎; 𝜌, 𝐹 ) ≥
1
2
(

2𝐹− (

𝛿+ + 𝜀−
)

− 𝜀−
(

2𝛿+ + 𝜀−
))

𝑙̇(𝑎; 𝜌),

which can be re-arranged to read

𝛿𝐸1(𝑎; 𝜌, 𝐹 ) ≥
1
2
(

2𝐹
(

𝛿+ + 𝜀−
)

+ (𝜀−)2
)

𝑙̇(𝑎; 𝜌). (2.30)

Recalling that 𝛿+ is non-negative and 𝜀− is positive it follows from (2.30) that when 0 ≤ 𝐹 < 𝐹−

𝛿𝐸1(𝑎; 𝜌, 𝐹 ) > 0. (2.31)

For the same reason as before, the inequality (2.31) implies that when 𝐹 is less than 𝐹− but still non-negative then there cannot
exist any de-adhered lengths that are in equilibrium. □

The inequality (2.28) implies that the derivative of the total energy w.r.t 𝑎 will be negative when 𝐹 is greater than 𝐹+ irrespective
of the value of 𝑎, 𝑤, or the nature of 𝜌 (see, e.g., Fig. 6a and c). Thus, if 𝐹 > 𝐹+ the de-adhered length will grow without bound.
Realistically, however, the de-adhered length will keep growing until the film completely detaches from the substrate. For that
reason we call 𝐹+ the peel-off force.

The result that (2.31) holds in the case where 0 ≤ 𝐹 < 𝐹− implies that the derivative of the total energy with respect to the
de-adhered length in that case is positive irrespective of any other details in the problem (see, for example, Fig. 6b and d). Therefore,
if 0 ≤ 𝐹 < 𝐹− and the de-adhered length is initially naught, then the de-adhered length will not grow or if it is initially non-zero
then it will keep decreasing, i.e., the peel front will keep receding until the entire thin film is adhered to the substrate. For this
reason, we call 𝐹− the peel-initiation force.

2.2.3. Stability of equilibrium state
We study the stability of the local equilibria by examining the sign of the second variation of the total potential energy.

Specifically, a configuration with the de-adhered length 𝑎 is a stable equilibrium state iff 𝑎 belongs to the set

 (𝐹 , 𝜌) ∶=
{

𝑎 ∈ ◦(𝐹 , 𝜌) ∣ 𝛿𝐸2(𝑎 ; 𝜌, 𝐹 ) > 0
}

. (2.32)

It is a neutral equilibrium state iff 𝑎 belongs to the set

⊙(𝐹 , 𝜌) ∶=
{

𝑎 ∈ ◦(𝐹 , 𝜌) ∣ 𝛿𝐸2(𝑎 ; 𝜌, 𝐹 ) = 0
}

, (2.33)

and is an unstable equilibrium state if 𝑎 belongs to the set ⊗(𝐹 , 𝜌), which is a set of all de-adhered lengths that belong to ◦(𝐹 , 𝜌)
but not to  (𝐹 , 𝜌) or ⊙(𝐹 , 𝜌).

Stability and surface curvature. Suppose 𝑎 is an equilibrium de-adhered length at the force 𝐹 . Then it is necessary that 𝐹 and 𝑎
satisfy the equation 𝐹 = 𝐹 (𝑎), where 𝐹 (⋅) on the right hand side is the function defined in (2.20). Upon substituting 𝐹 in (2.18c)
with 𝐹 (𝑎), and then simplifying the resulting equation, we get that

𝛿𝐸2(𝑎 ; 𝜌, 𝐹 (𝑎)) = −
𝐹 (𝑎)
2

𝑘(𝑎)𝑙̇(𝑎; 𝜌)2 sin (𝜓(𝑎)) , (2.34)

where

𝑘(𝑎) = 𝜌̈(𝑎)∕𝑙̇(𝑎; 𝜌)3 (2.35)

is the signed curvature of the graph of 𝜌. The mean curvature of the substrate’s surface at the point whose coordinates w.r.t to e1
and e are 𝑎 and 𝜌(𝑎), respectively, equals 𝑘(𝑎)∕(2𝜆). Therefore, we will often refer to 𝑘(𝑎) as the substrate’s surface curvature.
11
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Fig. 6. The plot of potential energy as a function of 𝑎 for different values of 𝐹 for peeling on the sinusoidal [(a)–(b)] and complicated [(c)–(d)] surfaces. Note
that there is no local minima of the energy when 𝐹 > 𝐹 + in (a) and (c). The labels 1⃝– 3⃝ correspond to those marked in Fig. 4b and d. There is also no local
minima of the energy when 0 ≤ 𝐹 < 𝐹 − in (b) and (d).

If 𝑤 = 0, then from (2.20) we have that 𝐹 (𝑎) = 0. Consequently, from (2.34), 𝛿𝐸2 = 0 for all 𝑎. Therefore, when 𝑤 = 0 all states
are neutral-equilibrium states. In the following section we take that 𝑤 is positive (recall that 𝑤 ≥ 0).

If 𝑘(𝑎) vanishes then it follows from (2.34) that 𝑎 belongs to ⊙, i.e., that the corresponding state is a neutral equilibrium state.
It follows from the definitions of 𝑎±, 𝜌̇±, and 𝑘 and the smoothness of 𝜌 that 𝑘 (𝑎) = 0 iff 𝑎 = 𝑎±. So, if 𝑘(𝑎) does not vanish then

𝑎 is different from 𝑎±, which implies from the definitions of 𝜌̇±, 𝜓 , and 𝜓± that 𝜓(𝑎) is different from 𝜓±. This last deduction in
conjunction with (2.24) implies that when 𝑘(𝑎) is not naught, sin(𝜓(𝑎)) is positive. Hence, it follows from (2.34) that the configuration
is stable (resp. unstable) when 𝑘(𝑎) is negative (resp. positive). These results, which connect an equilibrium state’s stability to the
surface curvature, are illustrated by Fig. 4b–c for a sinusoidal surface and by Fig. 4e–f for a complicated surface.

Positive, negative, and zero values of the function 𝐹̇ (⋅) imply stable, unstable, and neutral equilibria, respectively. Again, let 𝑎 be an
equilibrium de-adhered length at the force 𝐹 . From (2.20) we have that

𝐹̇ (𝑎) = −𝑘(𝑎)𝑙̇(𝑎; 𝜌) sin(𝜓(𝑎))
(

1 −
1 − cos(𝜓(𝑎))

(2𝑤 + (1 − cos(𝜓(𝑎)))2)1∕2

)

. (2.36)

Recall that we deduced that when 𝑤 = 0 all configurations are neutral equilibrium configurations. Therefore, in the following two
paragraphs we take that 𝑤 > 0.

Say 𝐹̇ (𝑎) vanishes. It can be checked using (2.13a) that 𝑙̇(𝑎; 𝜌) is always positive, and since we have assumed that 𝑤 > 0 it can
be shown that the expression within the large parenthesis on the right hand side of (2.36) is always positive. Therefore, if 𝐹̇ (𝑎)
vanishes then we have the following three cases from (2.36): (i) the factor 𝑘(𝑎) vanishes, (ii) the factor sin(𝜓(𝑎)) vanishes, (iii)
12
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Fig. 7. A schematic of peeling with contact. (a) Forward peeling, non-local contact. (b) Backward peeling, non-local contact. (c) Forward peeling, local contact.
(d) Backward peeling, local contact. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

both these factors vanish. The factor 𝑘(𝑎) vanishes in both case (i) and (iii). Let us focus on case (ii). If sin(𝜓(𝑎)) vanishes then we
know from (2.24) that 𝑎 = 𝑎±, which then implies, based on the discussion following (2.34), that 𝑘(𝑎) has to also vanish. then we
know from (2.24) that 𝑎 = 𝑎±, which then implies, based on the discussion contained in the third paragraph following the one
containing (2.34) that, 𝑘(𝑎) has to also vanish. Thus, 𝑘(𝑎) vanishes in all three cases. That is, if 𝐹̇ (𝑎) is equal to zero then 𝑘(𝑎) is also
equal to zero. This last deduction in light of the results presented in Stability and surface curvature implies that if 𝐹̇ (𝑎) vanishes then
the configuration corresponding to 𝑎 is a neutral-equilibrium configuration.

Now say that 𝐹̇ (𝑎) is positive (resp. negative). As previously stated, since we have assumed that 𝑤 > 0 the expression within the
large parenthesis on the right hand side of (2.36) is always positive. The factor sin(𝜓(𝑎)) is positive since we can show using (2.24)
that it is always non-negative and if it were to vanish then that would contradict the assumption that 𝐹̇ (𝑎) is non-zero. This,
in conjunction with (2.36), imply that 𝑘(𝑎) is negative (resp. positive) whenever 𝐹̇ (𝑎) is positive (resp. negative). In light of the
results presented in Stability and surface curvature, this last deduction implies that when 𝐹̇ (𝑎) is positive (resp. negative) then the
corresponding equilibrium configuration is stable (resp. unstable).

These results are illustrated in Fig. 4b and e using the example surface profiles shown in Fig. 4c and f.

2.3. Peeling process that might involve contact

If 𝜃 is kept fixed during the peeling process and that constant 𝜃 violates the global compatibility condition (2.10), then there will
exist some configurations during the peeling process that will involve contact.8 We provide a procedure for determining whether
or not a given configuration involves contact in Section 2.3.2. If the configuration 𝜿 does not involve contact, the results needed
to compute the force 𝐹 so that (𝜿, 𝐹 ) is an equilibrium state and the results needed to determine the stability of (𝜿, 𝐹 ) are given in
Section 2.2.

When 𝜿 involves contact the primitive conditions that determines whether or not a state (𝜿, 𝐹 ) is in equilibrium remain the
same as before. Specifically, even when a configuration 𝜿 involves contact, the state (𝜿, 𝐹 ) is an equilibrium state iff the de-adhered
length 𝑎 in 𝜿 belongs to the set ◦(𝐹 , 𝜌), which is defined in (2.19). Similarly, it qualifies as a stable, neutral, or unstable state
depending on whether the de-adhered length 𝑎 belongs to the sets ∙(𝐹 , 𝜌), ⊙(𝐹 , 𝜌), or ⊗(𝐹 , 𝜌), respectively. These sets are
defined in Section 2.2.3.

What makes the analysis of the case involving contact more challenging is the calculation of the functions 𝛿𝐸1 and 𝛿𝐸2, which
are needed for the construction of the sets ◦(𝐹 , 𝜌), ∙(𝐹 , 𝜌), etc. These functions are defined in (2.18a) in terms of the asymptotic
expansion of 𝛿𝐸 as 𝛿𝑎 → 0. The calculation of 𝛿𝐸’s asymptotic expansion is challenging due to the presence of the term −𝑭 ⋅ 𝛿𝒖
in (2.8). In the case involving contact the term −𝑭 ⋅ 𝛿𝒖 simplifies to −𝐹𝛿𝑢, where 𝛿𝑢 is 𝛿𝒖’s magnitude. This is due to the fact that

8 This, of course, does not mean that in such a peeling process all configurations will involve contact. That is, there can exist configurations that involve
no contact during parts of the peeling process (see, e.g., Fig. 8b).
13
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Fig. 8. Forward peeling (a–c) and backward peeling (d–f) on a sinusoidal surface. The function 𝜚 of surface profile is the same as the one considered in Fig. 4a.
(a) and (d) show the numerically calculated true peeling angle 𝜓 , (b) and (e) show the 𝐹–𝑎 plot, and (c) and (f) show representative peeling configurations
corresponding to the equilibrium states marked in (b) and (e), respectively. In (b) and (e), the stable, neutral, and unstable equilibrium state are marked with
a solid dot, circled dot, and circle, respectively. The yellow regions indicate the occurrence of contact during peeling, while white regions indicate no contact.
For the forward (resp. backward) peeling, the peel-off force 𝐹 + = 0.1 (resp. 𝐹 + = 0.03), which is much greater than the peel-off force, 0.033 (resp. 0.003), for
peeling on a flat surface with the same nominal peeling angle. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

𝛿𝒖 is always in the same direction as 𝑭 (see Figs. 12 and 13) when a configuration involves contact. This remains true irrespective
of whether the contact region consists of a single contact patch (e.g., see Fig. 7) or several contact patches (e.g., see subfigure (a) in
either Fig. 12 or 13). Thus, calculation of 𝛿𝐸’s asymptotic expansion requires the calculations of 𝛿𝑢’s asymptotic expansion, which
in this current case is non-trivial. To elaborate, in the case not involving contact, it is straightforward to determine the asymptotic
expansion of 𝛿𝑢, e.g. through the use of (2.11) and (2.12). While now in the case involving contact this exercise is relatively more
difficult.

We could not obtain a general, closed-form expression for the asymptotic expansion of 𝛿𝑢 when the configuration involved
contact. However, in Section 2.3.3 we present a family of four analytical, but not closed-form, expressions for calculating 𝛿𝑢’s
asymptotic expansion, and from that 𝛿𝐸1 and 𝛿𝐸2, that apply to special categories of contact configurations. We describe these four
categories, to whom we henceforth refer to as C.1, C.2, etc., shortly in Section 2.3.1, but we note here that it will follow from their
definitions that any contact configuration can be uniquely placed into in one of them.

From the family of 𝛿𝐸1 functions given in Section 2.3.3, which apply to different categories of contact configurations, we found
that, interestingly, irrespective of which category a contact configuration 𝜿 belongs to the force 𝐹 needed to make the state (𝜿, 𝐹 )
an equilibrium state is always F(𝜓(𝑎)), where F is defined in (2.20b). However, it follows from the family of 𝛿𝐸2 functions given
in Section 2.3.3 that 𝜿’s category is still relevant for determining the nature of (𝜿, 𝐹 (𝑎))’s stability.
14
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In summary, our method for simulating a peeling process in which 𝜃 violates the global compatibility condition at some stage
of the peeling process is as follows. Let the peeling experiment be defined by prescribing the sequence (𝑎𝑖, 𝜃𝑖), where 𝑖 = 1, 2, etc.,
and the symbols 𝑎𝑖 and 𝜃𝑖 are the de-adhered length and the nominal peel angle, respectively, in the 𝑖th step of the experiment.
We compute 𝜓(𝑎𝑖), the true peeling angle for the 𝑖th step, using Algorithm 1. We place the configuration 𝜿𝑖 into one of the four
categories, C.1–4, using 𝜃𝑖 and 𝜓(𝑎𝑖) (see Section 2.3.2 for details). We then compute the force 𝐹𝑖 such that the state 𝑖 = (𝜿𝑖, 𝐹𝑖)
becomes an equilibrium state as F(𝜓(𝑎𝑖)). We determine the nature of 𝑖’s stability by computing 𝛿𝐸2(𝑎𝑖; 𝜌, 𝐹𝑖) and constructing
the sets  , ⊙, etc. When the contact configuration 𝜿 belongs to either C.1 or C.2 the Algorithm 1 also provides the value of the
parameter 𝓁, which is the distance between the peeling and contact fronts. So, when 𝜿 belongs to either C.1 or C.2 we use that value
in conjunction with (2.40b) to compute 𝛿𝐸2(𝑎𝑖; 𝜌, 𝐹𝑖). When 𝜿 belongs to C.3 or C.4 we compute the value of 𝛿𝐸2 using (2.42b) or
(2.44b), respectively.

We demonstrate our method by using the same two example surfaces that we previously considered in Section 2.2. The schematics
of these simple and complicated wavy surfaces are shown, e.g., in Fig. 4a and d, respectively.

On each surface we simulated two (virtual) peeling experiments. In the first experiment – forward peeling (defined in Sec-
tion 2.3.1) – the peeling angle was kept fixed at a value of 𝜋∕3 through out the experiment, while in the second one – backward
peeling (defined in Section 2.3.1) – it was kept fixed at 3𝜋∕4. The constant nominal peeling angles we chose, namely 𝜋∕3 and 3𝜋∕4,
violated the global compatibility condition on both our example surfaces. Therefore, the results from Section 2.2 cannot be used to
simulate these experiments, for instance to generate the set

⋃

𝐹∈[𝐹− ,𝐹+]
◦(𝐹 , 𝜌) {𝐹 } (2.37)

for these experiments. Note that a typical point in (2.37) represents an equilibrium state, with its abscissa denoting the state’s
de-adhered length and its ordinate the state’s force. Therefore, we applied our method, which we introduced earlier in this section,
to the sequence (𝑎𝑖, 𝜃0) (𝜃0 = 𝜋∕3, 3𝜋∕4) and computed the sequence (𝐹𝑖), where 𝐹𝑖 is the equilibrium force corresponding to 𝑎𝑖; And
constructed (a subset of) (2.37), alternately, as

{

(𝑎𝑖, 𝐹𝑖)
}

. The sets (2.37) that we generated this way for the forward and backward
peeling cases are shown in subfigures (b) and (e), respectively, of Fig. 8 for the simple wavy surface and in Fig. 9 for the complicated
wavy surface.

Note that our method also determines the stability of an equilibrium state and informs us whether or not that state involves
contact. In the subfigures (b) and (e) of Figs. 8 and 9 the stable equilibrium states are denoted using solid/filled symbols while
unstable states are denoted using hollow/unfilled symbols. In the subfigures we identify the states that involve contact by placing
them over a yellow background. As can be noted from the subfigure, a yellow region is preceded and followed by white regions, and
vice versa. Thus, when the global compatibility condition is violated a sequence of configurations involving contact can be followed
by a sequence of configurations not involving contact, and so on.

Finally, our method also provides the true peeling angle sequences
(

𝜓(𝑎𝑖)
)

in the experiments. These are shown in subfigures
(a) and (b) of Figs. 8 and 9.

A few representative configurations from the peeling experiments are explicitly sketched in subfigures (c) and (f) of Figs. 8 and
9.

2.3.1. The four categories of contact configurations
A configuration involving contact can be placed into one of the following four categories.

C.1 Forward-peeling, non-local contact (Fig. 7a),
C.2 Backward-peeling, non-local contact (Fig. 7b),
C.3 Forward-peeling, local contact (Fig. 7c), and
C.4 Backward-peeling, local contact (Fig. 7d).

We call a configuration a forward-peeling configuration if the 𝜃 in it is less than 𝜋∕2, and a backward-peeling configuration otherwise.
Roughly speaking, we consider configurations of the type shown in Fig. 7a and b as those that involve non-local contact, and
configurations of the type shown in Fig. 7c and d as those that involve local contact. We define local and non-local contact precisely
by introducing the notions of contact region and contact front, which we discuss next.

We define the contact region corresponding to the deformed configuration 𝜿 as 𝛤𝑐 = {𝑥1 ∈  ∣ 𝒙(𝑥1) ∈ 𝜕S}, where

𝜕S =
{

𝑥1e1 + 𝑥2e2 + 𝑥3e3 ∈ E ∣ (𝑥1, 𝑥2, 𝑥3) ∈ R3 and 𝑥2 = 𝜌(𝑥1)
}

(2.38)

is the substrate’s surface (cf. (2.1)) and 𝒙 is defined in (2.3b). Let 𝑐 be the point in 𝛤𝑐 that is closest to 𝛤𝑎 in ’s topology; recall
here that 𝛤𝑎 is the adhered region corresponding to the configuration 𝜿. We define the contact front as 𝐶 = {𝑂 + 𝒙(𝑐) + 𝑥3e3 ∈  ∣
|𝑥3| ≤ 𝑏∕2}.
15
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2.3.2. Procedure for determining a configuration’s type – contact or non-contact – and a contact configuration’s category

Algorithm 1 Procedure for determining the category of a configuration
1: procedure Generate (true peeling angle 𝜓(𝑎) and distance 𝓁)
2: Input: Substrate’s surface profile 𝜌, nominal peeling angle 𝜃, and de-adhered length 𝑎
3: Let 𝛥𝜌(𝑥1) ∶= 𝜌(𝑎) − tan (𝜃)

(

𝑥1 − 𝑎
)

− 𝜌
(

𝑥1
)

, where 𝑥1 ∈ R.
4: if 𝛥𝜌(𝑥1) > 0 for all 𝑥1 satisfying sgn

(

(𝜃 − 𝜋∕2)(𝑥1 − 𝑎)
)

> 09 then ⊳ No contact
5:

𝜓(𝑎) = 𝜃 + tan−1(𝜌̇(𝑎)).

⊳ c.f. (2.15)
6: else
7: if 𝑘(𝑎) ≤ 0 and 𝜌̇(𝑎)sgn(𝜃 − 𝜋∕2) > 0 then ⊳ Local type contact
8:

𝜓(𝑎) =

{

0, 𝜃 < 𝜋∕2,
𝜋, 𝜃 ≥ 𝜋∕2.

9: else ⊳ Non-local type contact
10: Find the abscissa of contact front 𝑐 such that

𝜌(𝑎) − 𝜌(𝑐)
𝑎 − 𝑐

= 𝜌̇(𝑐) for sgn ((𝜃 − 𝜋∕2)(𝑐 − 𝑎)) > 0.

11: Then

𝜓(𝑎) =

{

tan−1 (𝜌̇(𝑎)) − tan−1 (𝜌̇(𝑐)) , 𝜃 < 𝜋∕2, forward peeling,
𝜋 + tan−1 (𝜌̇(𝑎)) − tan−1 (𝜌̇(𝑐)) , 𝜃 ≥ 𝜋∕2, backward peeling,

12: and

𝓁 =
(

(𝑎 − 𝑐)2 + (𝜌(𝑎) − 𝜌(𝑐))2
)1∕2

.

13: end if
14: end if
15: end procedure

When 𝜃 satisfies the global compatibility condition then we know that the configuration 𝜿 will be of non-contact type. When the
global compatibility condition is violated, as we describe in the next few paragraphs, determining whether or not 𝜿 involves contact,
i.e., determining its type, and if it involves contact then determining the contact category that 𝜿 belongs to essentially comes down
to determining the true peeling angle 𝜓(𝑎).

The true peeling angle is defined in Section 2.1.3. When 𝜃 satisfies the global compatibility condition 𝜓(𝑎) is given by (2.15).
When 𝜃 violates the global compatibility condition it can be computed using the numerical procedure that we present in Algorithm
1.

Given a configuration 𝜿, if the true peeling angle 𝜓(𝑎) in it is different from (2.15) then 𝜿 is a contact type configuration.
Otherwise, it is a non-contact type configuration.

For placing a contact type configuration 𝜿 into one of the four categories described in Section 2.3.1 it is sufficient to know
whether 𝜿 is a forward or backward peeling configuration and whether the contact in it is of the local or the non-local type.

The configuration 𝜿 is a forward peeling configuration if 𝜃 < 𝜋∕2, and a backward peeling configuration otherwise. A contact
configuration 𝜿 involves non-local or local contact depending on whether the true peeling angle in it, 𝜓(𝑎), lies in the interior or
on the boundary of the set [0, 𝜋].

2.3.3. Asymptotic expansion of 𝛿𝑢 and the functions 𝛿𝐸1 and 𝛿𝐸2 for the different categories of contact configurations
Categories C.1–2. In Appendix we show that for these categories

𝛿𝑢 = (1 + 𝜀 − cos(𝜓(𝑎))) 𝑙̇(𝑎; 𝜌)𝛿𝑎 + 1
2

(

(1 + 𝜀)𝑙(𝑎; 𝜌) −
𝑙̇(𝑎; 𝜌)2

𝓁
sin2(𝜓(𝑎)) +

(sin(𝜓(𝑎)) − cos(𝜓(𝑎))𝜌̇(𝑎)) 𝜌̈(𝑎)
𝑙̇(𝑎; 𝜌)

)

(𝛿𝑎)2 + 𝑜((𝛿𝑎)2),

(2.39)

9 We define the sgn(⋅) function as:

sgn(𝑥) =
{

+1, 𝑥 ≥ 0,
−1, 𝑥 < 0.
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Fig. 9. Forward peeling (a–c) and backward peeling (d–f) on a complicated surface. The function 𝜚 of surface profile is the same as the one considered in Fig. 4d.
(a) and (d) show the numerically calculated true peeling angle 𝜓 , (b) and (e) show the 𝐹–𝑎 plot, and (c) and (f) show representative peeling configurations
corresponding to the equilibrium states marked in (b) and (e), respectively. The stable, neutral, and unstable equilibrium states are marked with a solid dot,
circled dot, and circle, respectively. The yellow regions indicate the occurrence of contact during peeling, while white regions indicate no contact. For the
forward (resp. backward) peeling, the peel-off force 𝐹 + = 0.1 (resp. 𝐹 + = 0.053), which is much greater than the peel-off force, 0.033 (resp. 0.003), for peeling
on a flat surface with the same nominal peeling angle. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

where 𝓁 is the distance between 𝑃 and 𝐶. Recall that 𝑃 and 𝐶 denote the peeling and contact front, respectively (e.g., see Fig. 7).
We introduced these notions in Section 2.1.1 and Section 2.3.1. Substituting the 𝛿𝑢 appearing in (2.8) with the expression appearing
on the right hand side of (2.39) and then comparing the resulting equation with (2.18a) we get that

𝛿𝐸1(𝑎 ; 𝜌, 𝐹 ) ∶=
(

−1
2
𝐹 2 + 𝐹 (cos(𝜓(𝑎)) − 1) +𝑤

)

𝑙̇(𝑎; 𝜌), (2.40a)

𝛿𝐸2(𝑎 ; 𝜌, 𝐹 ) ∶= −1
2

((

𝐹 2

2
+ 𝐹 −𝑤

)

𝑙(𝑎; 𝜌) − 𝐹
(

𝑙̇(𝑎; 𝜌)2

𝓁
sin2(𝜓(𝑎)) −

(sin(𝜓(𝑎)) − cos(𝜓(𝑎))𝜌̇(𝑎)) 𝜌̈(𝑎)
𝑙̇(𝑎; 𝜌)

))

. (2.40b)

Categories C.3. As can be noted from Fig. 12c for this category, 𝛿𝑢 = 𝜀𝛿𝑙. With (2.12) we have

𝛿𝑢 = 𝜀
(

𝑙̇(𝑎; 𝜌)𝛿𝑎 + 1 𝑙(𝑎; 𝜌)(𝛿𝑎)2 + 𝑜
(

(𝛿𝑎)2
)

)

. (2.41)
17
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As before, substituting 𝛿𝑢 from (2.41) into (2.8) and comparing the resulting equation with (2.18a) we get that

𝛿𝐸1(𝑎 ; 𝜌, 𝐹 ) ∶= −
( 1
2
𝐹 2 −𝑤

)

𝑙̇(𝑎; 𝜌), (2.42a)

𝛿𝐸2(𝑎 ; 𝜌, 𝐹 ) ∶= −1
2

(

𝐹 2

2
−𝑤

)

𝑙(𝑎; 𝜌). (2.42b)

Categories C.4. As can be noted from Fig. 13c for this category, 𝛿𝑢 = (1 + 𝜀)𝛿𝑙. With (2.12) we have

𝛿𝑢 = (1 + 𝜀)
(

𝑙̇(𝑎; 𝜌)𝛿𝑎 + 1
2
𝑙(𝑎; 𝜌)(𝛿𝑎)2 + 𝑜

(

(𝛿𝑎)2
)

)

. (2.43)

It follows from (2.43), (2.8), and (2.18a) that

𝛿𝐸1(𝑎 ; 𝜌, 𝐹 ) ∶= −
( 1
2
𝐹 2 + 2𝐹 −𝑤

)

𝑙̇(𝑎; 𝜌), (2.44a)

𝛿𝐸2(𝑎 ; 𝜌, 𝐹 ) ∶= −1
2

(

𝐹 2

2
+ 2𝐹 −𝑤

)

𝑙(𝑎; 𝜌). (2.44b)

2.3.4. Remarks on peeling with contact
The results for peeling involving contact shown in Figs. 8 and 9 only apply to the sample surfaces shown in Fig. 4a and d,

respectively. That is, we do not have a general, closed-form, analytical theory for the case in which at least some configurations
involve contact. However, we can make the following general, interesting, remarks with regard to the case involving contact.

Theorem 2.1 also holds when the global compatibility condition (2.10) is violated.

Theorem 2.2. During forward peeling when the global compatibility condition (2.10) is violated, specifically when 𝜃 < − tan−1 (𝜌̇−), the
peel-off force achieves its upper bound, which is (2𝑤)1∕2.

Proof. Consider the configuration in which the de-adhered length 𝑎 = 𝑎−. The length 𝑎− is defined in (2.10c). Using Algorithm 1
we show that the true peeling angle in this configuration, 𝜓(𝑎−), is naught.

We start by showing that the 𝑎− configuration involves contact. Let us assume that the 𝑎− configuration does not involve contact.
It then follows from Algorithm 1, line 4 that 𝛥𝜌(𝑥1) > 0 for all 𝑥 < 𝑎−. Recalling 𝛥𝜌’s definition this last implication can be written
more explicitly as

𝜌(𝑎) − 𝜌(𝑥1)
𝑎 − 𝑥1

> − tan(𝜃), (2.45)

or all 𝑥1 < 𝑎−. Taking the limit 𝑥1 ↗ 𝑎− in (2.45) and noting that 𝜚̇ is a continuous function we get that

𝜌̇(𝑎−) ≥ − tan(𝜃). (2.46)

ince 𝜌̇(𝑎−) =∶ 𝜌̇−, the left hand side in (2.46) simplifies to 𝜌̇−. It follows from our hypothesis that the global compatibility condition
s violated that the right hand side of (2.46) is greater than 𝜌̇−. Thus, we get a contradiction. Hence, our assumption that the 𝑎−
onfiguration does not involve contact is false.

Since the 𝑎− configuration involves contact we need to move to line 7 of Algorithm 1 for determining the configuration’s true
eeling angle. Noting that we have assumed 𝜌̈ to be a continuous function and, from (2.10b), that 𝜌̇− is 𝜌̇’s minimum value we
et that 𝜌̈(𝑎−) = 0. This last result together with (2.13a) and (2.35) implies that 𝑘(𝑎−) = 0. The function 𝜚’s property that it is a
urjective function with the range [−1, 1] implies that 𝜌̇− is negative. As a consequence of these last two implications we need to
ove to line 8 from line 7 in the algorithm. Since in forward peeling 𝜃 < 𝜋∕2 we get from line 8 that the true peeling angle in the
− configuration is naught, i.e., 𝜓(𝑎−) = 0.

In Section 2.3 we discussed that the equilibrium force corresponding to a configuration with de-adhered length 𝑎 is F(𝜓(𝑎)).
hus, we the 𝑎− configuration’s equilibrium force is F(0), which simplifies to (2𝑤)1∕2.

Recall that (2𝑤)1∕2 is the function F’s maximum value. This fact in conjunction with 𝐹+’s definition (2.22) and the final result
rom the previous paragraph imply that 𝐹+ = (2𝑤)1∕2. □

heorem 2.3. During backward peeling when the global compatibility condition (2.10) is violated, specifically when 𝜃 > 𝜋 − tan−1
(

𝜌̇+
)

,
he peel-initiation force achieves its lower bound, which is (4 + 2𝑤)1∕2 − 2.

We omit our proof for Theorem 2.3. Since it is quite similar to the one we provided for Theorem 2.2, except that in it we focus
n the configuration with de-adhered length 𝑎+ instead of the configuration with de-adhered length 𝑎−.

heorem 2.4. During backward peeling when the global compatibility condition is violated, specifically when

𝜃 > 𝜋 − tan−1
(

𝜌̇+
)

(2.47a)

he equilibrium force is always less than or equal to F
(

𝜓−
lb
)

, where

𝜓−
lb ∶= 𝜋 + tan−1 (𝜌̇−) − tan−1

(

𝜌̇+
)

. (2.47b)
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Proof. In Section 2.3 we discovered that during backward peeling when the global compatibility condition is violated there will
xist some configurations that involve contact and others that do not (see Figs. 8e and 9e.)

When a configuration involves contact the true peeling angle is given by (2.15). Since, by hypothesis, 𝜃 > 𝜋 − tan−1
(

𝜌̇+
)

and,
ince 𝜌̇(𝑎) ≥ 𝜌̇− by definition, tan−1 (𝜌̇(𝑎)) ≥ tan−1 (𝜌̇−) it follows from (2.15) that during backward peeling when the configuration
oes not involve contact the true peeling angle is greater than 𝜋 + tan−1 (𝜌̇−) − tan−1

(

𝜌̇+
)

, which is nothing but 𝜓−
lb.

When a configuration involves contact then it follows from Algorithm 1 that the true peeling angle is either equal to 𝜋 (local
contact) or to 𝜋 + tan−1 (𝜌̇(𝑎)) − tan−1 (𝜌̇(𝑐)) (non-local contact), where recall that 𝑎 and 𝑐 are the abscissae of the peeling and contact
fronts, respectively. Since we have assumed 𝜌 to be a non-constant function it follows that 𝜌̇+ > 𝜌̇− and hence that 𝜋 > 𝜓−

lb. It follows
from the definitions of 𝜌̇+, 𝜌̇−, and the monotonicity of tan−1 that 𝜋 + tan−1 (𝜌̇(𝑎)) − tan−1 (𝜌̇(𝑐)) ≥ 𝜓−

lb. Thus, in the case of contact the
rue peeling angle is greater than or equal to 𝜓−

lb.
The deductions in the last two paragraphs can be summarized by saying that when (2.47a) holds the true peeling angle is always

reater than or equal to 𝜓−
lb. In Section 2.3 we discussed that the equilibrium force corresponding to the true peeling angle 𝜓(𝑎)

s always F(𝜓(𝑎)), irrespective of whether or not the configuration involves contact. Since F is a monotonically decreasing function
he last two statements imply that under (2.47a) the equilibrium peeling force is always less than or equal to F

(

𝜓−
lb
)

=∶ 𝐹+
ub. □

For illustrating Theorem 2.3, we mark 𝜓−
lb and 𝐹+

ub for the case of backward peeling under (2.47a) on a simple wavy surface in
ig. 8d and e, respectively, and on a complicated wavy surface in Fig. 9d and e, respectively.

. Angle-independent optimal peel-off force

In this section, we analyze the asymptotic value of the peel-off force 𝐹+ when the substrate’s aspect ratio 𝛼, or its root-mean-
quare (RMS)10 roughness, becomes large. This is equivalent to, e.g., the case where the substrate’s surface’s periodicity 𝜆 becomes
anishingly small in comparison to its amplitude 𝐴.

It follows from Algorithm 1 that as 𝛼 becomes large all configurations become contact configurations, irrespective of 𝑎 or 𝜚, if 𝜃
s different from 𝜋∕2; and if 𝜃 = 𝜋∕2 none of the configurations involve contact.

When 𝜃 = 𝜋∕2, since none of the configurations involve contact, we can use the results given in Section 2.2. Specifically,
sing (2.23b) we get that as 𝛼 becomes large 𝜓− becomes vanishingly small, since in that limit 𝜌̇− tends to negative infinity. Taking
he limit 𝜓− → 0 in (2.23a) we get the result that 𝐹+ approaches its upper bound (2𝑤)1∕2 as 𝛼 becomes large. This result is shown
llustrated in Fig. 10.

When 𝜃 < 𝜋∕2, the condition 𝜃 < − tan−1(𝜌̇−) will inevitably get violated for a large enough 𝛼. Thus, from Theorem 2.2 we get
hat 𝐹+ will eventually equal its upper bound of (2𝑤)1∕2 as 𝛼 becomes large.

When 𝜃 > 𝜋∕2, let us choose an 𝑎 for which 𝜚̇(𝑎) is negative. Now consider a sequence of configurations that all have that
ame 𝑎, 𝜚, and 𝜃 > 𝜋∕2 but increasingly larger values of 𝛼. It follows from Algorithm 1 that when 𝛼 becomes large enough all
ubsequent configurations will be of the non-local-contact type, and that the true peeling angle in all of them can be computed as
+ tan−1 (𝜌̇(𝑎)) − tan−1 (𝜌̇(𝑐)). Recall that 𝑐 is the contact front’s abscissa. We would expect 𝑐 to vary between the configurations.
owever, it can be shown, again using Algorithm 1, that once the configurations become of the non-local-contact type the 𝑐 in them
lso remains fixed, and furthermore that the value of 𝜚̇ at that 𝑐 is positive. Since 𝜌̇ = 𝛼𝜚̇ and 𝜚̇ is negative at 𝑎 and positive at 𝑐 as
becomes large tan−1 (𝜌̇ (𝑎)) and tan−1 (𝜌̇ (𝑐)) tend to ∓𝜋∕2, respectively, and, consequently, the true peeling angles tend to naught.
ecall from the discussion in Section 2.3 that irrespective of whether or not a configuration involves contact, the equilibrium force

n that configuration can always be computed as F(𝜓(𝑎)), where 𝜓(𝑎) is the configuration’s true peeling angle. Thus, as 𝛼 becomes
arge the equilibrium force in the sequence converges to F(0) = (2𝑤)1∕2. From (2.22) we know that the peel-off force for each
eometry corresponding to a configuration in the sequence, namely that defined by the profile 𝛼𝜚 and the peeling angle 𝜃, is greater
han or equal to that configuration’s equilibrium force. As we noted in the discussion immediately ensuing (2.22) the peel-off force,
rrespective of profile or peeling-angle, is bounded above by (2𝑤)1∕2. It follows from the last three statements that for any fixed 𝜚
nd 𝜃 > 𝜋∕2 as 𝛼 becomes large the peel-off force tends to its upper bound (2𝑤)1∕2.

In summary, from the previous three paragraphs we have the important conclusion that as the surface roughness, 𝛼, is increased
he peel-off force 𝐹+ tends to its upper bound (2𝑤)1∕2. This happens independent of the surface’s shape, 𝜚, and the peeling angle, 𝜃.

e call this phenomenon angle-independent optimal adhesion. This phenomenon is quite interesting considering that adhesion on
flat surface is highly dependent on the peeling angle, and the optimal adhesion is only attained at a single peeling angle, namely

or 𝜃 = 0.
We numerically computed the peel-off force 𝐹+ for the simple and complicated wavy surface shapes, which we first considered

n Section 2.2, for various peeling angles. For each surface shape and peeling angle we calculated 𝐹+ for a sequence of geometries
f increasing 𝛼 values. The results of our calculations are shown in Fig. 10. As can be seen, at small 𝛼 values, for instance 𝛼 = 1.0
nd 5.0, the peel-off force 𝐹+ depends strongly on 𝜃. However, as 𝛼 increases the dependence of 𝐹+ on 𝜃 becomes weak, such that
t large 𝛼 values, e.g. 𝛼 = 10.0, the calculated peel-off forces appear to be essentially independent of the peeling angle. Finally,
rrespective of the peeling angle or the surface shape, the calculated peel-off force values appears to approach (2𝑤)1∕2 from below
s 𝛼 increases.

10 The RMS roughness of the substrate’s surface is equal to 𝛼
(

∫ 1 𝜚(𝑥 )2 𝑑𝑥
)1∕2

.
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Fig. 10. The plot of peel-off force 𝐹 + as a function of nominal peeling angle 𝜃 for the peeling on (a) simple and (c) complicated surfaces for a series of
ncreasing surface’s aspect ratio 𝛼. (b) and (d) are the zoom-in view of the region marked as dashed box in (a) and (c), respectively. The surface profiles, 𝜚, are

the same as those considered in Fig. 4c and f, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

4. Concluding remarks

We conclude this paper by briefly commenting on the effect of bending strain energy on the peel-off force. Peng and Chen (2015)
investigated the peeling of an elastic film on a sinusoidal surface. Their sinusoidal surface is the same our simple wavy surface that
we first considered in Section 2.2, and is shown illustrated in Fig. 4a. In their analysis they took into account the film’s bending
energy, where as in our model we only consider the strain energy due to tension and ignore the strain energy due to bending.
They do not consider contact between the thin-film and the substrate in their analysis. Therefore, some insight into the effect of the
bending strain energy can be garnered by comparing their analysis to the results that we present in Section 2.2 (peeling with no
contact) when they are particularized to the case of simple wavy surface.

In Peng and Chen’s model the equilibrium peeling force, 𝐹 , is related to the de-adhered length, 𝑎, as

𝐹 (𝑎) = cos(𝜓(𝑎)) − 1 +
(

(cos(𝜓(𝑎)) − 1)2 + 2𝑤 −
2𝜋4𝛼2ℎ̄2(1 + cos(4𝜋𝑎))

3(1 + 4𝜋2𝛼2 sin2(2𝜋𝑎))1∕2

)1∕2

, (4.1)

here ℎ̄ = ℎ∕𝜆. On particularizing the results in Section 2.2 to the case of simple wavy surface our model predicts the same relation
etween the equilibrium force and de-adhered length as (4.1) except that in it there are no terms containing ℎ̄. That is, in our
odel’s prediction the third terms from the left within the parenthesis of (4.1), containing ℎ̄, is absent. Since the third term scales
ith ℎ̄ as ℎ̄2, Peng and Chen’s results converge to our results as ℎ̄ → 0. This fact can also be noted from Fig. 11, in which we compare

he predictions from Peng and Chen’s model with those from our model for the case of no-contact and peeling on a simple wavy
urface for various ℎ̄ (in subfigure a) and 𝜃 (in subfigure (b)) values. Even though the above comparison is only for a particular
ubstrate profile, namely the simple wavy surface, we believe that it is reasonable to expect that the effect of the bending strain
20

nergy on the equilibrium forces will decrease with decreasing film thicknesses.
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Fig. 11. (a) The 𝐹–𝑎 plot for different values of thin film thicknesses ℎ̄ that considers the thin elastic film’s bending energy for peeling on a sinusoidal surface
at 𝜃 = 𝜋∕3. (b) The 𝐹–𝑎 plot for different values of nominal peeling angle 𝜃 for peeling a thin film with thickness ℎ̄ = 0 (red curves) and ℎ̄ = 0.06 (black curves)
on a sinusoidal surface. For the sinusoidal surface in (a) and (b), we take 𝐴 = 0.25, 𝜆 = 1.0, 𝜚(𝑥1) = − cos(2𝜋𝑥1), and 𝑤 = 0.005. For ℎ̄ = 0, the stable, neutral,
and unstable equilibrium state are marked with a solid dot, circled dot, and circle, respectively, from the stability analysis of our model. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

Another interesting feature of the above comparison that is revealed by Fig. 11 and merits further investigation is that ignoring
the bending strain energy seems to have no affect on the peel-off force. The peel-off force 𝐹+ which we might recall is the supremum
of all equilibrium forces on a given substrate profile and peeling angle. Specifically, as per Fig. 11 the supremum of the equilibrium
forces predicted by our’s as well as Peng and Chen’s model appear to be the same. This numerical evidence prompts us conjecture
that the bending strain energy, or the film thickness, will have no effect on a film’s peel-off force irrespective of the substrate profile
or peeling angle.
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Appendix. Derivation of 𝜹𝒖 for peeling involving contact

Configurations that involve contact during a generic forward peeling experiment are shown in Fig. 12, and similar
configurations from a backward peeling experiment are shown in Fig. 13. For concreteness we focus on the forward peeling
experiment, however, our remarks apply to the backward peeling experiment as well. The peeled part and the remainder of the
adhered part of the thin film in the configuration 𝜿 are shown, respectively, in dark orange and blue in Fig. 12a. We perturb 𝜿
lightly to obtain the nearby configuration 𝜿̃. The peeled part of the thin film in 𝜿̃ is shown in light orange in Fig. 12a. Recall
hat 𝑃 and 𝐶 denote the peeling and contact fronts in 𝜿. We denote the peeling and contact fronts in 𝜿̃ as 𝑃 and 𝐶̃.

The quantity that we aim to compute, namely, 𝛿𝑢, is related to the thin film’s kinematics. The thin film’s kinematics take
lace in  . However, since the thin film’s kinematics do not vary in the e3 direction, 𝛿𝑢 can be computed by only analyzing
he kinematics that take place in, say,  ’s 𝑥1-𝑥2 plane. Therefore, we will be focusing all our analysis related to computing 𝛿𝑢
nly to  ’s 𝑥1-𝑥2 plane. In order to avoid the introduction of more symbols, we will use the same symbols that we introduced
o refer to subsets of  to refer to the quantities that result from the projection of those subsets into the 𝑥1-𝑥2 plane. For
nstance. The peeling and contact fronts, 𝑃 and 𝐶, are line segments in  . However, we will be denoting their projections into
he 𝑥1–𝑥2 plane, which are points in  , also as 𝑃 and 𝐶, and refer to them as the peeling and contact point, respectively.

̃ ̃ ̃
21

imilarly, we denote the peeling and contact points in 𝜿 as 𝑃 and 𝐶.
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𝐷

Fig. 12. (a) The schematic of forward peeling involving contact that considers the peeling front 𝑃 moves to 𝑃 after an infinitesimal perturbation. The contact
front accordingly changes from 𝐶 to 𝐶̃. (b) and (c) show non-local and local type contact, respectively. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

We consider a general contact scenario in which the contact region 𝛤𝑐 ∈  consists of several disjoint contact patches, 𝛤𝑐1 ,
𝛤𝑐2 , etc. In Fig. 12a we mark the regions on the substrate which mate with these contact patches in 𝜿 as 𝒙

(

𝛤c1
)

, 𝒙
(

𝛤c2
)

,. . . ,

𝒙
(

𝛤cn
)

. We call 𝒙
(

𝛤c1
)

the first contact region, and 𝒙
(

𝛤cn
)

the last contact region. By definition, the point on the substrate
where the first contact region begins is the contact point 𝐶. We mark the point where the first contact region ends as 𝐷.
Similarly, we mark the points where the 𝑖th, 𝑖 = 2,… , 𝑛, contact region begins and ends as 𝐶𝑖 and 𝐷𝑖, respectively. We denote
the location of the thin film’s terminal end in 𝜿 as 𝑋.

As we perturb the thin film’s configuration from 𝜿 to 𝜿̃, the peeling front moves from 𝑃 to 𝑃 , the contact front moves
from 𝐶 to 𝐶̃, and the terminal end from 𝑋 to 𝑋̃. Interestingly, however, none of the other features that define the thin film’s
geometry move during this perturbation. Specifically, in 𝜿̃ the first contact region still ends at 𝐷, and all the other contact
regions still begin and end at the same points that they did in 𝜿.

The length of the peeled part of the film in 𝜿 can be computed as the sum of the lengths of the line segment 𝐶𝑃 , the arc
>
𝐶𝐷, the line segment 𝐷𝐶2, the arcs >𝐶𝑖𝐷𝑖, 𝑖 = 2,… , 𝑛, and the line segments 𝐷𝑖𝐶𝑖+1, 𝑖 = 2,… , 𝑛 − 1, and, finally, the line segment
𝑛𝑋. Based on the discussion in the previous paragraph, the length of the peeled part in 𝜿̃ is equal to the sum of the lengths

of the line segment 𝑃̃ 𝐶̃, the arc
>
𝐶̃𝐷, and, as before, the line segment 𝐷𝐶 , the arcs >𝐶 𝐷 , and the line segments 𝐷 𝐶 , and,
22
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Fig. 13. (a) The schematic of backward peeling involving contact that considers the peeling front 𝑃 moves to 𝑃 after an infinitesimal perturbation. The contact
front accordingly changes from 𝐶 to 𝐶̃. (b) and (c) show non-local and local type contact, respectively. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

finally, the line segment 𝐷𝑛𝑋̃. The difference in the length of the peeled part between 𝜿 and 𝜿̃, therefore, is

𝐷𝑛𝑋̃ −𝐷𝑛𝑋 +
>
𝐶̃𝐷 −

>
𝐶𝐷 + 𝑃 𝐶̃ − 𝑃𝐶.

The length difference can, alternately, also be computed as 𝛿𝑙(1 + 𝜀). Equating these two expressions for the length difference
and noting that 𝐷𝑛𝑋̃ −𝐷𝑛𝑋 is in fact 𝛿𝑢 we get that

𝛿𝑢 = 𝛿𝑙(1 + 𝜀) −
(>
𝐶̃𝐷 −

>
𝐶𝐷

)

− 𝑃 𝐶̃ + 𝑃𝐶. (A.1)

The term
>
𝐶̃𝐷 −

>
𝐶𝐷 in (A.1) can be computed as

>
𝐶̃𝐷 −

>
𝐶𝐷 = ±∫

𝑐

𝑐

(

1 + 𝜌̇(𝑥1)2
)1∕2 𝑑𝑥1, (A.2)

where the plus sign is for the case of forward peeling, while the minus sign is for the case of backward peeling.
23
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𝐶
𝑃
F

The points 𝑃 , 𝐶, 𝑃 , and 𝐶̃ are shown marked in, e.g., Fig. 12a. From the definitions of peeling and contact fronts it follows
that the coordinates of the points 𝑃 and 𝐶 are, respectively, (𝑎, 𝜌(𝑎)) and (𝑐, 𝜌(𝑐)). By denoting the abscissa of the points 𝑃 and
̃ as 𝑎̃ and 𝑐 it follows for similar reasons that these points’ coordinates are (𝑎̃, 𝜌(𝑎̃)) and (𝑐, 𝜌(𝑐)), respectively. The line segments
𝐶 and 𝑃̃ 𝐶̃ are tangent to the graph of 𝜌 at 𝐶 and 𝐶̃, respectively. (These aspects of the film’s geometry are especially clear in
ig. 12b.) Using this information it can be shown that

𝜌 (𝑎) − 𝜌 (𝑐) = 𝜌̇ (𝑐) (𝑎 − 𝑐), (A.3a)

𝜌 (𝑎̃) − 𝜌 (𝑐) = 𝜌̇ (𝑐) (𝑎̃ − 𝑐). (A.3b)

Using the knowledge of 𝑃 , 𝐶, 𝑃 , and 𝐶̃ ’s coordinates, and (A.3) it can be shown that

𝑃𝐶 =
(

1 + 𝜌̇(𝑐)2
)1∕2

|𝑐 − 𝑎|, (A.4)

𝑃 𝐶̃ =
(

1 + 𝜌̇(𝑐)2
)1∕2

|𝑐 − 𝑎̃|. (A.5)

Substituting
>
𝐶̃𝐷 −

>
𝐶𝐷, 𝑃𝐶, and 𝑃 𝐶̃ in (A.1) with the right hand sides of (A.2), (A.4), and (A.5), respectively; then writing 𝑎̃

as 𝑎 + 𝛿𝑎, and 𝑐 as the right hand side of (A.9) in the resulting equation; and then, finally, expanding the resulting equation in
series of 𝛿𝑎, we get that as 𝛿𝑎→ 0

𝛿𝑢 = (1 + 𝜀 − cos(𝜓(𝑎))) 𝑙̇(𝑎; 𝜌)𝛿𝑎 + 1
2

(

(1 + 𝜀)𝑙(𝑎; 𝜌) −
𝑙̇(𝑎; 𝜌)2

𝓁
sin2(𝜓(𝑎)) +

(sin(𝜓(𝑎)) − cos(𝜓(𝑎))𝜌̇(𝑎)) 𝜌̈(𝑎)
𝑙̇(𝑎; 𝜌)

)

(𝛿𝑎)2 + 𝑜
(

(𝛿𝑎)2
)

,

(A.6)

where 𝓁 is an alias for 𝑃𝐶. We introduce this new symbol so as to make some of the results that derive from (A.6) appear
more compact. The result (A.6) applies to both forward as well as backward peeling. In arriving at (A.6) we used (2.13), and
the result that

cos (𝜓(𝑎)) = ±
1 + 𝜌̇(𝑎)𝜌̇(𝑐)

((

1 + 𝜌̇(𝑎)2
) (

1 + 𝜌̇(𝑐)2
))

1
2

, (A.7)

where the plus sign is for the case of forward peeling, while the minus sign is for the case of backward peeling. The
result (A.7) follows from Algorithm 1.

A.1. The asymptotic behavior of 𝛿𝑐 as 𝛿𝑎→ 0

Expressing 𝑎̃ as 𝑎 + 𝛿𝑎 and 𝑐 as 𝑐 + 𝑓 (𝛿𝑎), where 𝑓 is some real valued analytic function over R, in (A.3b), and then
expanding both sides of the resulting equation in series of 𝛿𝑎, we get that as 𝛿𝑎→ 0

((𝑐 − 𝑎)𝜌̇(𝑐) + 𝜌(𝑎) − 𝜌(𝑐)) +
(

(𝑐 − 𝑎) ̇𝑓 (0)𝜌̈(𝑐) + 𝜌̇(𝑎) − 𝜌̇(𝑐)
)

𝛿𝑎 + 𝑜 (𝛿𝑎) = 0. (A.8)

In arriving at (A.8) we made use of the identity that 𝑓 (0) = 0, which is a consequence of the requirement that 𝑐 → 𝑐 as 𝛿𝑎 → 0.
It follows from (A.3a) and (A.8) that

𝛿𝑐 =
𝜌̇(𝑎) − 𝜌̇(𝑐)
𝜌̈(𝑐)(𝑎 − 𝑐)

𝛿𝑎 + 𝑜 (𝛿𝑎) . (A.9)
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